Answer:
A) ω2 = 1.394 rad/s
B) KE_i = 1.7085 J and KE_f = 3.2196J
Step-by-step explanation:
We are given;
Mass of objects: m1 = m2 = 2kg
Radius: r1 = 0.9m ; r2 = 0.28m
Angular velocity: ω1 = 0.74 rad/s
Moment of inertia of stool and object: I = 3kg.m²
A) Using the law of conservation of angular momentum:
I1•ω1 = I2•ω2
The values of the moment of inertia according to the parallel axis theorem will be:
I1 = I + 2mr1²
So, I1 = 3 + 2(2 x 0.9²)
I1 = 6.24 kg.m²
Similarly,
I2 = I + 2mr2²
I2 = 3 + 2(2)(0.28²)
I2 = 3.3136 kg.m²
Since I1•ω1 = I2•ω2
Thus, ω2 = I1•ω1/I2
ω2 = 6.24 x 0.74/3.3136
ω2 = 1.394 rad/s
B) The initial kinetic energy is:
KE_i = (1/2)•I1•ω1²
KE_i = (1/2) x 6.24 x 0.74²
KE_i = 1.7085 J
The final kinetic energy is;
KE_f = (1/2)•I2•ω2²
KE_f = (1/2) x 3.3136 x 1.394²
KE_f = 3.2196J