31.1k views
0 votes
find the volume of the cone. either enter exact answer in terms of pi or use 3.14 for pi and round your final answer to the nearest hundredth.

find the volume of the cone. either enter exact answer in terms of pi or use 3.14 for-example-1

2 Answers

2 votes

Answer:


6\pi u^3 = 18.8u^3

Explanation:

the information we have is:

  • the radius of the circle in the base:
    r=3u (u for units)
  • and the height of the cone:
    h=2u

to find the volume we need the formula for the volume of a cone:


V=(\pi r^2h)/(3)

where r is the radius and h is the height.

Substituting the known values to find the volume:


V=(\pi (3u)^2(2u))/(3) \\\\V=(\pi (9u^2)(2u))/(3)\\ \\V=(18\pi u^3)/(3)\\ \\V=6\pi u^3

the volume in terms of
\pi is
6\pi u^3

and if we substitute the value of pi:
\pi=3.14 we get:


V=6(3.14)u^3\\V=18.8u^3

User Joshua Finch
by
3.8k points
6 votes

Answer:

v = 6π units³ or V ≈18.84 units³

Explanation:

To find the volume of the cone, we will follow the steps below;

first, write down the formula for finding the volume of a cone;

V = π r² h/3

where r is the radius and h is the height of the cone and v is the volume of the cone

From the diagram given, height of the cone is 2 and radius is 3

We can now proceed to insert our values into the formula;

V = π r² h/3

Finding the volume in terms of pi

V = π r² h/3

V = π ×3² ×2/3

one of the 3 at the numerator will cancel out 3 at the denominator in the right-hand side of the equation

v =π×3×2

v = 6π units³

putting π = 3.14

V = 6 (3.14)

V ≈18.84 units³

User Jake Kalstad
by
3.2k points