4.7k views
3 votes
PleaseeeeeHelp!!!!!!!!!!!!

PleaseeeeeHelp!!!!!!!!!!!!-example-1
User Nerissa
by
8.7k points

1 Answer

3 votes

Answer:

x = -2, y = -5

Explanation:

Isolate x for 3x - 2y = 4

3x - 2y = 4

Add 2y to both sides

3x -2y + 2y = 4 + 2y

Simplify

3x = 4 + 2y

Divide both sides by 3


(3x)/(3) =(4)/(3) +(2y)/(3)

Simplify


x=(4+2y)/(3)

Now we substitute
x=(4+2y)/(3) for x in 4x - 3y = 7


4*(4+2y)/(3)-3y=7

Isolate y for
4*(4+2y)/(3)-3y=7


4*(4+2y)/(3)-3y=7

Expand
4*(4+2y)/(3)-3y


4*(4+2y)/(3) =(16+8y)/(3)


4*(4+2y)/(3)

Multiply fractions:
a*(b)/(c) =(a*b)/(c)


=((4+2y)*4)/(3)

Expand
(4+2y)*4


=4(4+2y)

Apply the distributive law:
a(b+c)=ab+ac


a=4, b=4,c=2y


=4*4+4*2y

Simplify
4*4+4*2y

Multiply the numbers:
4*4 = 16


=16+4*2y

Multiply the numbers:
4*2=8


=16+8y


=(16+8y)/(3)


=(8y+16)/(3)-3y

Convert element to fraction:
3y=(3y3)/(3)


=(16+8y)/(3) -(3y*3)/(3)

Since the denominators are equal, combine the fractions:
(a)/(c)±
(b)/(c)= (a±b)/(c)


=(16+8y-3y*3)/(3)


16+8y-3y*3

Multiply the numbers:
3*3=9


=16+8y-9y

Add similar elements:
8y-9y=-y


=16-y


=(16-y)/(3)

Apply the fraction rule:
(a)/(c)±
(b)/(c)= (a±b)/(c)


(16-y)/(3) =(16)/(3) -(y)/(3)


=(16)/(3)-(y)/(3)


(16)/(3) -(y)/(3) =7

Multiply both sides by 3


(16)/(3)*3-(y)/(3) *3=7*3

Simplify


16-y=21

Subtract 16 from both sides


16-y-16=21-16

Simplify


-y=5

Divide both sides by -1


(-y)/(-1) =(5)/(-1)

Simplify


y=-5

For
x=(4+2y)/(3) substitute
y=-5


x=(4+2y(-5))/(3)

Remove parentheses:
(-a)=-a


=(4+2y*5)/(3)

Multiply the numbers:
2*5=10


=4-10

Subtract the numbers:
4-10=-6


=-6


=(-6)/(3)

Apply the fraction rule:
(-a)/(b) =-(a)/(b)


=-(6)/(3)

Divide the numbers:
(6)/(3)=2


=-2

The solutions to the system of equations are


y=-5,x=-2

Checking answers

Plug in
x=-2 and
y=-5 into
3x-2y=4 and
4x-3y=7


3(-2)-2(-5)=4

Remove parentheses:
(-a)=-a,-(-a)=a


=3*2+2=5

Multiply the numbers:
3*2=6


=-6+2*5

Multiply the numbers:
2*5=10


=-6+10

Add/subtract the numbers:
-6+10=4


=4

First equation proven true

Substitute the values of x and y into the second equation


4(-2)-3(-5)=7

Follow the PEMDAS order of operations

Multiply and divide left to right
4(-2)


4(-2)

Apply rule
a*(-b)=-a*b


4(-2)=-4*2=-8


=-8


=-8-3(-5)

Multiply and divide left to right
3(-5)


3(-5)

Apply rule
a*(-b)=-a*b


3*(-5)=-3*5=-15


=-15


=-8-(-15)

Add and subtract left to right
-8-(-15)


-8-(-15)

Apply rule
-(-a)=+a


-(-15)=+15


=-8+15


-8+15=7


=7

Second equation proven true.

Both equations are true with
x=-2 and
y=-5

User Kashief
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories