Stokes' theorem says the integral of the curl of
over a surface
with boundary
is equal to the integral of
along the boundary. In other words, the flux of the curl of the vector field is equal to the circulation of the field, such that
![\displaystyle\iint_S\\abla*\vec F\cdot\mathrm d\vec S=\int_C\vec F\cdot\mathrm d\vec r](https://img.qammunity.org/2021/formulas/mathematics/college/18g7a7lzr4xpsl3z7k42s08wxyyttk4zfc.png)
We have
![\vec F(x,y,z)=x^2\,\vec\imath+4x\,\vec\jmath+z^2\,\vec k](https://img.qammunity.org/2021/formulas/mathematics/college/k70bgi44qthb2asrady3dx8875jsbxg5qy.png)
![\implies\\abla*\vec F(x,y,z)=4\,\vec k](https://img.qammunity.org/2021/formulas/mathematics/college/n11ngtpqs2azrdwwp8zu41cf3zgp7wu5uv.png)
Parameterize the ellipse
by
![\vec s(u,v)=(u\cos v)/(\sqrt5)\,\vec\imath+\frac{u\sqrt5\sin v}4\,\vec\jmath](https://img.qammunity.org/2021/formulas/mathematics/college/gli11fat223iicbhe22kdgqvf9y12633jt.png)
with
and
.
Take the normal vector to
to be
![(\partial\vec s)/(\partial\vec u)*(\partial\vec s)/(\partial\vec v)=\frac u4\,\vec k](https://img.qammunity.org/2021/formulas/mathematics/college/m4w0bg4bjuzav8qutrc678l1cftgbkuvc9.png)
Then the flux of the curl is
![\displaystyle\iint_S4\,\vec k\cdot\frac u4\,\vec k\,\mathrm dA=\int_0^(2\pi)\int_0^1u\,\mathrm du\,\mathrm dv=\boxed{\pi}](https://img.qammunity.org/2021/formulas/mathematics/college/nzbrziwoo0mo740ngr470sngjxlndinsw7.png)