Given:
The length of the side of the metal is x + 7.
The length of the side of the hole is x - 2.
We need to determine the area of the metal part or the shaded region.
Area of the metal:
The area of the metal can be determined using the formula,
![A=s^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/o9zxg41yvoa3srjrnclaalypba9y5e71gu.png)
Substituting s = x + 7, we get;
![A=(x+7)^2](https://img.qammunity.org/2021/formulas/mathematics/college/8dvfsrraakqmitu32jxgj01r1o80a0zf5e.png)
![A=x^2+14x+49](https://img.qammunity.org/2021/formulas/mathematics/college/od4u4r9nqt7fkifxhbrcaotd1rwnhluj3t.png)
Thus, the area of the metal is
square units.
Area of the hole:
The area of the hole can be determined using the formula,
![A=s^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/o9zxg41yvoa3srjrnclaalypba9y5e71gu.png)
Substituting s = x -2 ,we get;
![A=(x-2)^2](https://img.qammunity.org/2021/formulas/mathematics/college/8qqs3rqgs1cp1ai0do04l19jhzwrcbjyqu.png)
![A=x^2-4x+4](https://img.qammunity.org/2021/formulas/mathematics/college/be7h420uxyta5gd8gojv32zpt1ovchg86j.png)
Thus, the area of the hole is
square units.
Area of the shaded region:
The area of the shaded region can be determined by subtracting the area of the hole from the area of the metal.
Thus, we have;
Area = Area of the metal - Area of the hole
Substituting the values, we have;
![Area = x^2+14x+49-(x^2-4x+4)](https://img.qammunity.org/2021/formulas/mathematics/college/zeu72vwiqp5sithautmfu6x8oofnakj9td.png)
Simplifying, we have;
![Area = x^2+14x+49-x^2+4x-4](https://img.qammunity.org/2021/formulas/mathematics/college/n34vgxft627180lud9rorbvjcx5weurrm0.png)
![Area = 18x+45](https://img.qammunity.org/2021/formulas/mathematics/college/e4shbba6jky1tz643zm7fbuq0l4k2f3b7c.png)
Thus, the area of the shaded region is (18x + 45) square units.