48.3k views
5 votes
Use the discriminate to determine how many solutions this equation has -8x^2-8x-2=0

User Mihawk
by
3.3k points

2 Answers

12 votes
  • -8x²-8x-2=0

Here

  • a=-8
  • b=-8
  • c=-2

Discriminate

  • D=b²-4ac
  • D=(-8)²-4(-8)(-2)
  • D=64-64
  • D=0

Roots are equal hence one solution

User Kyle O
by
3.5k points
7 votes

Answer:

One solution

Explanation:

Discriminant


\textsf{Discriminant}:b^2-4ac}\quad\textsf{when}\:ax^2+bx+c=0


\textsf{If}\quad b^2-4ac=0 \implies \textsf{one solution}


\textsf{If}\quad b^2-4ac > 0 \implies \textsf{two solutions}


\textsf{If}\quad b^2-4ac < 0 \implies \textsf{no solutions}

Given equation:


-8x^2-8x-2=0

Swap sides:


\implies 8x^2+8x+2=0

Using discriminant:


\implies b^2-4ac=8^2-4(8)(2)=0

Therefore, there is one solution

--------------------------------------------------------------------------------------------

Proof


8x^2+8x+2=0

Divide both sides by 2:


\implies 4x^2+4x+1=0

Separate the middle term:


\implies 4x^2+2x+2x+1=0

Factor the first two terms and the last two terms separately:


\implies 2x(2x+1)+1(2x+1)=0

Factor out the common term
(2x+1):


\implies (2x+1)(2x+1)=0

Therefore:


\implies 2x+1=0


\implies x=-\frac12

Thus proving there is one solution.

User Gianpi
by
3.6k points