Answer:
Height of the cone = 4 m
Explanation:
Given:
Volume of a cube = (12π) m^3
Radius of the cone = (6/2) m = 3 m
We have to find the value of "x".
And "x" is the height of the cone from the figure shown.
Formula to be used:
Volume of the cone: 1/3(πr^2h)
Here height = "x"
⇒
![V_c_o_n_e=(\pi r^2 h)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9rskz5m233ccbk9yez3no2x2mni05sz4vb.png)
⇒
![V_c_o_n_e=(\pi r^2 x)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qibx91t5zoiniglhi0pzr5ndezulq4rdlk.png)
⇒
![3* V_c_o_n_e=(\pi r^2 x)/(3)* 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/y41nyonjqk2bpm4mig693f823opuucjlx9.png)
⇒
![3* V_c_o_n_e=\pi r^2 x](https://img.qammunity.org/2021/formulas/mathematics/high-school/ezxwplxxc1ns8lxflq2s0wgtayj5ozdag7.png)
⇒
![(3* V_c_o_n_e)/(\pi r^2) =(\pi r^2* x)/(\pi r^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/93yju75suz7j3a87vi0zanzrq02ksjvpfj.png)
⇒
![x=(3* V_c_o_n_e)/(\pi r^2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/izxl6i9q699oscrrblpmd0yuglxj28xrxi.png)
⇒
![x=(3* 12\pi )/(\pi (3)^2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/fcdu099x5os91qv4m1063kpts9wga85neb.png)
⇒
![x=(36\pi )/(9\pi )](https://img.qammunity.org/2021/formulas/mathematics/high-school/w4w6ddlk81xqtnmxjvmnheov4i3ifvlbz0.png)
⇒
![x=(36)/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/msgos1t3r6fj6b0klzbz42xmtbkmjxx3g3.png)
⇒
meters.
The height of the cone "x" = 4 meters option A is the right choice.