Answer: time t = 0.405 units
Explanation:
The given function is
C(t) = 10(e-2t – e-3t)
If t = 0, substitute t in the equation
C(0) = 10(e-2(0) – e-3(0))
C(0) = 10 (1 - 1)
C = 0
If t = 1
C(1) = 10(e-2(1) – e-3(1))
C(1) = 10(0.0855)
C(1) = 0.855
1f t = 2
C(2) = 10(e-2(2) – e-3(2))
C(2) = 10( 0.0154)
C(2) = 0.154
If t = 5
C(5) = 10(e-2(5) – e-3(5))
C(5) = 10( 0.0000451)
C(5) = 0.000451
C'(t) = 10 (-2e^-2t + 3e^-3t)
Factorize the equation in the bracket
C'(t) = 10 (e^-2t) (-2 + 3e^-t)
0 = e^-2t
0 = -2 + 3e^-t
2/3 = e^-t
ln 2/3 = -t
-0.405465 = -t
t = 0.405
Therefore the absolute maximum over the used domain occurs at an endpoint (t=1), as indeed the relative maximum occurs outside this interval