207k views
5 votes
Solve the logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. log Subscript 5 Baseline left parenthesis x plus 22 right parenthesis minus log Subscript 5 Baseline left parenthesis x minus 2 right parenthesis equals 2

User Kharl
by
6.3k points

1 Answer

2 votes

Answer:

Value of x = 3

Explanation:

Given a logarithmic function:


log_5\ (x+22) - log_5\ (x-2) =2


log_5\ (x+22) =2+log_5\ (x-2)

...subtracting log_5(x-2) both sides.


log_5\ (x+22) =log_5\ (5^2)+log_5\ (x-2)

Using log of the base
log_5(5) = 1 and
x=log_y(y^x) so
2=log_5(5^2)


log_5\ (x+22) =log_5\ (25)+log_5\ (x-2)

Applying log product rule ...
log_x(a)+log_x(b)=log_x(ab)


log_5\ (x+22) =log_5\ 25(x-2)


(x+22) =25(x-2)


x+22=25x-50


25x-50-x-22=0


25x-x-50-22=0


24x=72


x=(72)/(24)


x=3

The value of x in the logarithmic equation, = 3

User Malin
by
5.7k points