Answer:
The temperature is 1259.4 K (986.4°C)
Step-by-step explanation:
Step 1: Data given
The activation energy Ea, = 117 kJ/mol
the rate constant for the reaction is 0.00289 s −1 at 590 °C
The new rate constant = 0.492 s −1
Step 2: Calculate the temperature
ln(kX / k 590°C) = Ea/R * (1/T1 - 1/T2)
⇒with kX is the rate constant at the new temperature = 0.492 /s
⇒with k 590 °C = the rate constant at 590 °C = 0.00289 /s
⇒with Ea = the activation energy = 117000 J/mol
⇒with R = the gas constant = 8.314 J/mol*K
⇒with T1 = 590 °C = 863 K
⇒ with T2 = the new temperature
ln (0.492 / 0.00289) = 117000/8.314 *(1/863 - 1/T2)
5.137 =14072.6 * (1/863 - 1/T2)
3.65*10^-4 = (1/863 - 1/T2)
3.65*10^-4 = 0.001159 - 1/T2
0,000794 = 1/T2
T2 = 1259.4 K
The temperature is 1259.4 K or 986.4 °C