Answer:
x = 8
Explanation:
Given equation:
![(-2)/(3) (x+12)+(2x)/(3) =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/hwqm5etnq8lb83z3cew3ue3guqwa1sds9h.png)
Start out by simplifying the distributive property on the left hand side.
![\implies (-2x)/(3) + ((-24))/(3) +(2x)/(3) =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/8d4oyaaxfcc7vft5w3p8wemv55zc900qax.png)
Combine like terms on the left hand side.
![\implies x\huge\text{(}(-2)/(3) + (2)/(3)\huge\text{)}+ ((-24))/(3) =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9xzdr75xr3ftvl7ru26wln6ke8wruczenn.png)
Simplify the left hand side.
![\implies x\huge\text{(}0\huge\text{)}+ ((-24))/(3) =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dvrknf47pwxbxnt3u0a0v98ap43470wa61.png)
![\implies x\huge\text{(}0\huge\text{)} - 8 =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9d981cq78v4srff4libqcvvvuwel67oamh.png)
![\implies0- 8 =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9m0rhut1cre6s0swqpvlkiwvwz7huefgb4.png)
![\implies-8 =(-5x)/(4) +2](https://img.qammunity.org/2023/formulas/mathematics/high-school/q3vzmnzn34avdiktxj14t8ljba1fng01d0.png)
Subtract 2 both sides.
![\implies-8 -2 =(-5x)/(4) +2 - 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/raes32l3pe96ipq50kz07ujlxmlc3t4q2c.png)
![\implies-10 =(-5x)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/omd3ipbfk7d3l7dkniy2aauivkxy30ffuh.png)
Use cross multiplication.
![\implies-10 * 4 =-5x](https://img.qammunity.org/2023/formulas/mathematics/high-school/bdsnvxxnamuzejtl1ro4fyf9bve1pm6s34.png)
![\implies-40 =-5x](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ag560g2z40odb37bou1j5t2cjkrl7hvk1.png)
Divide -5 both sides.
![\implies (-40)/(-5) =(-5x)/(-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qeg0d4hkxz3lmximo2tk9x9tmg3d5x22sk.png)
![\implies 8=x](https://img.qammunity.org/2023/formulas/mathematics/high-school/cpqjzr87fft81bzm7nn4f7i2a89wth5ln5.png)
Thus, the value of x is 8.