Answer:
1)
![y=x^2+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3ybnebf0uu6qshjtx3i6gfql035wt1wpy.png)
2)
![y=x^2-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/utc3xrb8yr9b80s888uj46olxi7crsaxwa.png)
3)
![y=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/1ch5n55tacdusoaz2xqjwppl7gqbo47w29.png)
4)
![y=x^2+6x+14](https://img.qammunity.org/2023/formulas/mathematics/high-school/i18q2y6kfxc56c8qi4ewt7ejw5vg6it9eb.png)
Explanation:
Question 1
Given points: (-2, 6) (-1, 3) (0, 2) (1, 3)
This is likely to be a quadratic equation with a vertex of (0, 2) since the points (-1, 3) and (1, 3) are symmetrical about x = 0
Vertex form of quadratic equation:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
(where (h, k) is the vertex)
![\implies y=a(x-0)^2+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/tjodwco0n3oy4z30kxaeyxknwshu4xr72l.png)
![\implies y=ax^2+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/3jr4sxmnk8uhf3sl4tthzjf8dlw4gnm6zk.png)
To find a, input one of the points into the equation:
![(1, 3)\implies a(1)^2+2=3\implies a=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/5vg63801ssmiknmodvlsk8ty8okbs4aonk.png)
Therefore, the equation of the graph is
![y=x^2+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3ybnebf0uu6qshjtx3i6gfql035wt1wpy.png)
Question 2
If the parabola intersects the x-axis at (-2, 0) and (2, 0) then
![y=a(x+2)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zr4wvsbshkda1uift7lh25sm1es7fin1ql.png)
We are told that the y-intercepts if (0, -4). Input this into the equation to find a:
![\implies a(0+2)(0-2)=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/446tghk2dvtz8sf0gwpfw3t7w3zvd5c3pz.png)
![\implies -4a=-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/ufni75rhu21dl0uh72hco0b28dzxw65vtr.png)
![\implies a=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xxyyi2ygmjise4a6sg565ds06g6nrrgia9.png)
Therefore,
![\implies y=(x+2)(x-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1ao6t5m3cudfiwvypzidvwsp80dlyifx3.png)
![\implies y=x^2-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/docp1uy73khfwk06b7omnvub03oz0wq8pk.png)
Question 3
Given points: (-2, 4) (-1, 1) (0, 0) (1, 1)
This is likely to be a quadratic equation with a vertex of (0, 0) since the points (-1, 1) and (1, 1) are symmetrical about x = 0
Vertex form of quadratic equation:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
(where (h, k) is the vertex)
![\implies y=a(x-0)^2+0](https://img.qammunity.org/2023/formulas/mathematics/high-school/qla74ig7wsr5xlfju5y3dys5rlnv16n1if.png)
![\implies y=ax^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/x4eerkeggn6qcx21ftlf8udwy92wntgzcs.png)
To find a, input one of the points into the equation:
![(-2,4)\implies a(-2)^2=4\implies a=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/egolpnj6n3yvv6e9loaeapegfmnh2bzqqi.png)
Therefore, the equation of the graph is
![y=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/1ch5n55tacdusoaz2xqjwppl7gqbo47w29.png)
Question 4
![f(x) = x^2 + 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/izlnd7jn98abluwkkv5ohfqno6v0fghqlv.png)
If we wish to move the function to the left by 3 units, we substitute x for
:
![\begin{aligned}\implies f(x+3) & =(x+3)^2+5\\ & = x^2+6x+9+5\\ & = x^2+6x+14\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bvk0kqx7d8nnjy0huah6r93tyt8jtwdlhe.png)
![\implies y=(x+3)^2+5](https://img.qammunity.org/2023/formulas/mathematics/high-school/vivk1m45397dfnu4csj7fmmttcxj7uw0ua.png)