Answer:
The marginal-cost function is;
c'(x)= (20x-1)/(2√(400 + 10x² - x))
Completed question;
The cost of producing x bags of dog food is given by C(x) = 800 + √(400 + 10x² - x) where 0≤x≤55000. Find the marginal-cost function.
The marginal-cost function is c'(x)=
(Use integers or fractions for any numbers in the expression.)
Explanation:
The marginal-cost function is c'(x)= = dC(x)/dx
Where;
C(x) = 800 + √(400 + 10x² - x)
c'(x) = d(800 + √(400 + 10x² - x) )/dx
Using function of function rule of differentiation or chain rule;
c'(x) = (20x-1)×(1/2√(400 + 10x² - x))
c'(x) = (20x-1)/(2√(400 + 10x² - x))
The marginal-cost function is;
c'(x)= (20x-1)/(2√(400 + 10x² - x))