Given:
ΔABC undergoes a dilation by a scale factor and comes as ΔA'B'C'.
To show that both the triangles are similar.
Formula
- By the condition of similarity we get,
If two triangles have three pairs of sides in the same ratio, then the triangles are similar.
- By Pythagoras theorem we get,
![Hypotenuse^2 = Base^2+Height^2](https://img.qammunity.org/2021/formulas/mathematics/college/wjbjxrj0r45dl8o5s8fzusox28kpev975t.png)
Now,
In ΔABC,
AB = 18 unit
BC = 10 unit
So,
![AC^2 = AB^2+BC^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rdvagfqhjccawjvxg0pedn1sujs925a7bt.png)
or,
![AC^2 = 18^2+10^2](https://img.qammunity.org/2021/formulas/mathematics/college/o6bijeiq4rln3fn260bcev62v67hcb932z.png)
or,
![AC = √(424)](https://img.qammunity.org/2021/formulas/mathematics/college/ubbmnrees9njhbxn9x38w8qpnbpvomv2at.png)
Again,
In ΔA'B'C'
A'B' = 9 unit
B'C' = 5 unit
So,
![A'C' ^2 = A'B'^2+B'C'^2](https://img.qammunity.org/2021/formulas/mathematics/college/3kiayqaexv64kfw4nvgyhi61rw1mndr14l.png)
or,
![A'C'^2 = 9^2+5^2](https://img.qammunity.org/2021/formulas/mathematics/college/un7gdwqxsbtr47x0mrk6dfpl5yxr968l32.png)
or,
![A'C' = √(106)](https://img.qammunity.org/2021/formulas/mathematics/college/zin634kddngqfas2vgd4v62x5uij215jt4.png)
Now,
![(BC)/(B'C') = (10)/(5) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/eusd5ne1lep22nd9gyl5r6t0u00s34tfgf.png)
![(AC)/(A'C') = (√(424) )/(√(106) ) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/12hhchsw61xk4ymokvwejzji77i0lv771w.png)
Hence,
All the ratios are equal.
Therefore, we can conclude that,
ΔABC and ΔA'B'C' are similar.