a. Salt flows into tank A at a rate of
(y(t)/500 lb/gal) * (50 gal/min) = y(t)/10 lb/gal
and out at a rate of
(x(t)/500 lb/gal) * (50 gal/min) = x(t)/10 lb/gal
so the net rate of change of the amount of salt in tank A is
![x'(t)=(y(t))/(10)-(x(t))/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/on8d1yac1hn95385fjf33moiuwa1qg39n7.png)
Similarly, you would find
![y'(t)=(x(t))/(10)-(y(t))/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/e53yppdbz4o73quqentpoggahcmy10yjd7.png)
b. We have
![x'=-\frac x{10}+\frac y{10}\implies x''=-(x')/(10)+(y')/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/r7ys0r0favewzg3guu91vepp7tm4uddi2l.png)
Notice that x' = -y', so
![x''=-{2x'}{10}\implies 5x''+x'=0](https://img.qammunity.org/2021/formulas/mathematics/college/mw38fa9t5isnci59yexq0xglj5ejgpdzso.png)
Solve for x: the characteristic equation
![5r^2+r=r(5r+1)=0](https://img.qammunity.org/2021/formulas/mathematics/college/jpmusx231juc7vt2reltk8clkzdqu5wvrz.png)
has roots
and
, so
![x(t)=C_1+C_2e^(-t/5)](https://img.qammunity.org/2021/formulas/mathematics/college/tw7solzw01d9gf5ev6cxw7dfnocxpql33g.png)
Again using the fact that y' = -x', we then find
![x'(t)=-\frac{C_2}5e^(-t/5)\implies y'(t)=\frac{C_2}5e^(-t/5)\implies y(t)=C_1-C_2e^(-t/5)](https://img.qammunity.org/2021/formulas/mathematics/college/6ni7zmyje02w9mvqp3hdmhjfo1bews2ds2.png)
Given that x(0) = 0 and y(0) = 10, we find
![\begin{cases}0=C_1+C_2\\10=C_1-C_2\end{cases}\implies C_1=5,C_2=-5](https://img.qammunity.org/2021/formulas/mathematics/college/bx55olvvxkv9vaoh5c20otzx3kgwasrywg.png)