Answer:
3^x=9^{x+5}
Explanation:
3^x=9^{x+5}
x^2-x-6=0
x^4-5x^2+4=0
\sqrt{x-1}-x=-7
\left|3x+1\right|=4
\log _2\left(x+1\right)=\log _3\left(27\right)
3^x=9^{x+5}
If request to solve;
\mathrm{Convert\:}9^{x+5}\mathrm{\:to\:base\:}3
9^{x+5}=\left(3^2\right)^{x+5}
\mathrm{Solve\:}\:x=2\left(x+5\right):\quad x=-10