Answer:
The gas enclosed in a container with rigid walls is at a pressure of 150,000 Pa. The temperature of the gas is 27 ° C. At what temperature in Kelvin and degrees Celcius does the gas have to be heated so that the pressure is 300,000 Pa?
Step-by-step explanation:
Given that,
When the temperature is 27°C, it's pressure is 150,000 Pa
Then,
T₁ = 27°C
Let convert to Melvin
T₁ = 27 + 273 = 300K
P₁ = 150,000 Pa
What's the temperature when it is heated to a pressure of 300,000 Pa
T₂ =?
P₂ = 300,000 Pa
Since the gas is in a rigid wall container then the volume does not change so,
V₁ = V₂
Using Gay Lussac law,
P₁ / T₁ = P₂ / T₂
Making T₂ subject of formula
T₂ = P₂ × T₁ / P₁
T₂ = 300,000 × 300 / 150,000
T₂ = 600K
So, converting to °C
°C = K - 273
°C = 600 - 273
°C = 327 °C
Then, the final temperature at 300,000 Pa is 600K OR 327°C
So, using Spanish
Dado que,
Cuando la temperatura es de 27 ° C, su presión es de 150,000 Pa
Entonces,
T₁ = 27 ° C
Deje convertir a Melvin
T₁ = 27 + 273 = 300K
P₁ = 150,000 Pa
¿Cuál es la temperatura cuando se calienta a una presión de 300,000 Pa?
T₂ =?
P₂ = 300,000 Pa
Como el gas está en un contenedor de pared rígido, el volumen no cambia,
V₁ = V₂
Usando la ley Gay Lussac,
P₁ / T₁ = P₂ / T₂
Hacer T₂ sujeto de fórmula
T₂ = P₂ × T₁ / P₁
T₂ = 300,000 × 300 / 150,000
T₂ = 600K
Entonces, convirtiendo a ° C
° C = K - 273
° C = 600 - 273
° C = 327 ° C
Entonces, la temperatura final a 300,000 Pa es 600K o 327 ° C