Answer:
a. 885,920
b. year 8
Explanation:
The population at a given time is described by the exponential formula ...
P(t) = P0·e^(-0.04t)
where P0 is given as 1,000,000.
a.
We are asked for the value of P(3). This ccan be found by substituting 3 for t in the equation and evaluating the numerical expression.
P(3) = 1,000,000·e^(-0.04·3) = 1,000,000·e^(-0.12)
P(3) ≈ 886,920
The population when t=3 is about 886,920.
__
b.
We can put the given numbers in the equation and solve for t.
750,000 = 1,000,000·e^(-0.04t)
0.75 = e^(-0.04t) . . . . . divide by 1,000,000
ln(0.75) = -0.04t . . . . . take the natural log
-ln(0.75)/0.04 = t ≈ 7.192
The population will drop below 750,000 in year 8.
_____
Additional comment
These values can be confirmed by a graphing calculator.
Note that "year 1" is the year between t=0 and t=1. So, "year 8" is the year between t=7 and t=8.