16.2k views
1 vote
A school is trying to schedule Prayers of chemistry and algebra two. They find that a total of 386,000 are taking either one or both of the two courses. 209 students signed up for algebra two and 300 need to have signed up for chemistry , what would be the probability that a student chosen at random from the 386 will be signed up for both of the courses? Ronja answer to the nearest whole number percent

User Miyamoto
by
5.2k points

1 Answer

4 votes

Answer: 32%

Explanation:

The total number of students that signed up for chemistry and algebra

two is 386.

Let x represent the number of students that signed up for both chemistry and algebra two

If 209 students signed up for algebra two, then the number of students that signed up for algebra two only is

209 - x

If 300 need to have signed up for chemistry, then the number of students that need to have signed up for chemistry only is 300 - x

Therefore,

x + 209 - x + 300 - x = 386

- x + 509 = 386

x = 509 - 386

x = 123

If 123 students would be signed up for both courses, then the probability that a student chosen at random from the 386 will be signed up for both of the courses is

123/386 × 100 = 32%

User Alex Brashear
by
5.1k points