110k views
2 votes
Lim x->pi/3 ((2cosx-1)/(tan^2x-3))

1 Answer

6 votes

You can check that the limit comes in an undefined form:


\displaystyle \lim_{x\to(\pi)/(3)} (2\cos(x)-1)/(\tan^2(x)-3)=(0)/(0)

In these cases, we can use de l'Hospital rule, and evaluate the limit of the ratio of the derivatives. We have:


\frac{\text{d}}{\text{d}x}2\cos(x)-1 = -2\sin(x)

and


\frac{\text{d}}{\text{d}x}\tan^2(x)-3 = 2(\tan(x))/(\cos^2(x))=(2\sin(x))/(\cos^3(x))

So, we have


\displaystyle \lim_{x\to(\pi)/(3)} (2\cos(x)-1)/(\tan^2(x)-3)=\lim_{x\to(\pi)/(3)} (-2\sin(x))/((2\sin(x))/(\cos^3(x)))=\lim_{x\to(\pi)/(3)}-\cos^3(x)=-\cos^3\left((\pi)/(3)\right)

User Pirkil
by
7.2k points