107,824 views
23 votes
23 votes
Someone please help

The scale factor of a model of a warehouse to the actual warehouse is 1 to 9. The
volume of the actual warehouse is 5,770 ft3.

Find the volume of the model
warehouse

Round to a whole number.

User Sreeraj VR
by
2.4k points

2 Answers

18 votes
18 votes

ans

8ft³

steps

1:729

729x=5770

x=5770/729

x=7.914952

x≈8

User Mangusto
by
3.6k points
15 votes
15 votes

just a quick addition to the great reply by yoyotam526 above.


~\hspace{5em} \textit{ratio relations of two similar shapes} \\\\\begin{array}{ccccllll} &\stackrel{\stackrel{ratio}{of~the}}{Sides}&\stackrel{\stackrel{ratio}{of~the}}{Areas}&\stackrel{\stackrel{ratio}{of~the}}{Volumes}\\ \cline{2-4}&\\ \cfrac{\stackrel{similar}{shape}}{\stackrel{similar}{shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}~\hspace{6em} \cfrac{s}{s}=\cfrac{√(Area)}{√(Area)}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] ~\dotfill


\stackrel{model}{1}~:~\stackrel{actual}{9}~~\implies \cfrac{\stackrel{model}{1}}{\underset{actual}{9}}=\cfrac{\sqrt[3]{\stackrel{model}{V}}}{\sqrt[3]{\stackrel{actual}{V}}}\implies \cfrac{1}{9}=\cfrac{\sqrt[3]{V}}{\sqrt[3]{5770}}\implies \cfrac{1}{9}=\sqrt[3]{\cfrac{V}{5770}} \\\\\\ \left( \cfrac{1}{9} \right)^3=\cfrac{V}{5770}\implies \cfrac{1}{9^3}=\cfrac{V}{5770}\implies \cfrac{1}{729}=\cfrac{V}{5770} \\\\\\ \cfrac{5770}{729}=V\implies 7.915~\approx~V\implies \stackrel{\textit{rounded up}}{8 \approx V}

User Roookeee
by
2.9k points