Answer:
If there is no damping, the amount of transmitted vibration that the microscope experienced is =
![5.676*10^(-3) \ mm](https://img.qammunity.org/2021/formulas/physics/college/r5vhai5hrck3vt2bjzfkpz90fma5azv43k.png)
Step-by-step explanation:
The motion of the ceiling is y = Y sinωt
y = 0.05 sin (2 π × 2) t
y = 0.05 sin 4 π t
K = 25 lb/ft × 4 sorings
K = 100 lb/ft
Amplitude of the microscope
![(X)/(Y)= [(1+2 \epsilon (\omega/ W_n)^2)/((1-((\omega)/(W_n))^2)^2+(2 \epsilon (\omega)/(W_n))^2)]](https://img.qammunity.org/2021/formulas/physics/college/bthincrcxj41ldqecrfkv9l2nz3hsesxi7.png)
where;
![\epsilon = 0](https://img.qammunity.org/2021/formulas/physics/college/hzga6hgw289ig4k0mpb239vqszb5q5broi.png)
![W_n = \sqrt { (k)/(m)}](https://img.qammunity.org/2021/formulas/physics/college/66ai7625l3h360gj6uzpy5fa1o9mh9m41x.png)
=
![\sqrt { (100*32.2)/(200)}](https://img.qammunity.org/2021/formulas/physics/college/j9i907j17r3cidp1h20sq4h45hmn92tsci.png)
= 4.0124
replacing them into the above equation and making X the subject of the formula:
![Y * \frac{1}{\sqrt{(1-((\omega)/(W_n))^2)^2})}}](https://img.qammunity.org/2021/formulas/physics/college/ny4jeg4ohceuv5vg0w2jyez4as3p9r50wr.png)
![0.05 * \frac{1}{\sqrt{(1-((4 \pi)/(4.0124))^2)^2})}}](https://img.qammunity.org/2021/formulas/physics/college/2t30u9igptf0p6ya9vdy9pnlgv44e9fhza.png)
![5.676*10^(-3) \ mm](https://img.qammunity.org/2021/formulas/physics/college/r5vhai5hrck3vt2bjzfkpz90fma5azv43k.png)
Therefore; If there is no damping, the amount of transmitted vibration that the microscope experienced is =
![5.676*10^(-3) \ mm](https://img.qammunity.org/2021/formulas/physics/college/r5vhai5hrck3vt2bjzfkpz90fma5azv43k.png)