The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Step-by-step explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0