Answer:
a) 4.04*10^-12m
b) 0.0209nm
c) 0.253MeV
Step-by-step explanation:
The formula for Compton's scattering is given by:
![\Delta \lambda=\lambda_f-\lambda_i=(h)/(m_oc)(1-cos\theta)](https://img.qammunity.org/2021/formulas/physics/high-school/klsq1i1263vhkoh6ucfeyfd3ldgfwri8ia.png)
where h is the Planck's constant, m is the mass of the electron and c is the speed of light.
a) by replacing in the formula you obtain the Compton shift:
![\Delta \lambda=(6.62*10^(-34)Js)/((9.1*10^(-31)kg)(3*10^8m/s))(1-cos132\°)=4.04*10^(-12)m](https://img.qammunity.org/2021/formulas/physics/high-school/ppy6b8lavtej176ccn1qewhoq9550po8ma.png)
b) The change in photon energy is given by:
![\Delta E=E_f-E_i=h(c)/(\lambda_f)-h(c)/(\lambda_i)=hc((1)/(\lambda_f)-(1)/(\lambda_i))\\\\\lambda_f=4.04*10^(-12)m +\lambda_i=4.04*10^(-12)m+(0.0169*10^(-9)m)=2.09*10^(-11)m=0.0209nm](https://img.qammunity.org/2021/formulas/physics/high-school/ijfaah4sjq40byvz0u3hxdrlkfccjrykgm.png)
c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.
![P=(h)/(\lambda_e)=(6.62*10^(-34)Js)/(2.43*10^(-12)m)=2.72*10^(-22)kgm\\](https://img.qammunity.org/2021/formulas/physics/high-school/8pufpscp0rwlmhf4fk9xko9a2n5w13vla5.png)
![E_e=(p^2)/(2m_e)=((2.72*10^(-22)kgm)^2)/(2(9.1*10^(-31)kg))=4.06*10^(-14)J\\\\1J=6.242*10^(18)eV\\\\E_e=4.06*10^(-14)(6.242*10^(18)eV)=0.253MeV](https://img.qammunity.org/2021/formulas/physics/high-school/sx55tq6uxa5ng427s1lis5uvz94t31tdtw.png)