5.0k views
0 votes
A 0.50-kg block attached to an ideal spring with a spring constant of 80 N/m oscillates on a horizontal frictionless surface. The total mechanical energy is 0.12 J. What is the greatest extension of the spring from its equilibrium length? What is the maximum speed of the block?

User Shard
by
4.2k points

1 Answer

0 votes

Answer:

The greatest extension of the spring is
\bf{0.055~m} and the maximum speed of the block is
\bf{0.695~m/s}.

Step-by-step explanation:

Given:

The mass of the block is,
m = 0.50~kg

The spring constant of the spring is,
k = 80~N/m

The mechanical energy of the block is,
E = 0.12~J

When a particle is oscillating in a simple harmonic way, its total energy is given by


E = (1)/(2)m\omega^(2)a^(2)~~~~~~~~~~~~~~~~~~~~~~~~~~~(1)

where
\omega is the angular velocity of the mass and
a is the amplitude of its motion.

The relation between angular velocity and spring constant is given by


\omega = \sqrt{(k)/(m)}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)

Substituting equation (2) in equation (1), we have


~~~~~~&& E = (1)/(2)ka^(2)\\&or,& a = \sqrt{(2E)/(k)}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(3)

Substituting
0.12~J for
E and
80~N/m for
k in equation (3), we can write


a &=& \sqrt{(2(0.12~J))/(80~N/m)}\\~~~&=& 0.055~m

The relation between the maximum velocity and the amplitude is given by


v_(m) &=& \omega a\\~~~~&=& \sqrt{(k)/(m)}a~~~~~~~~~~~~~~~~~~~~~~~~~~~~(4)

Substituting
80~N/m for
k ,
0.50~kg for
m and
0.055~m for
a in equation (4), we have


v_(m) &=& \sqrt{(80~N/m)/(0.50~kg)}(0.055~m)\\~~~&=& 0.695~m/s

User Fool
by
4.4k points