57.5k views
1 vote
A man holding a rock sits on a sled that is sliding across a frozen lake (negligible friction) with a speed of 0.550 m/s. The total mass of the sled, man, and rock is 96.5 kg. The mass of the rock is 0.300 kg and the man can throw it with a speed of 17.5 m/s. Both speeds are relative to the ground. Determine the speed of the sled if the man throws the rock forward (i.e. in the direction the sled is moving).

1 Answer

4 votes

Answer: 0.5 m/s

Step-by-step explanation:

Given

Speed of the sled, v = 0.55 m/s

Total mass, m = 96.5 kg

Mass of the rock, m1 = 0.3 kg

Speed of the rock, v1 = 17.5 m/s

To solve this, we would use the law of conservation of momentum

Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns

When the man throws the rock forward

rock:

m1 = 0.300 kg

V1 = 17.5 m/s, in the same direction of the sled with the man

m2 = 96.5 kg - 0.300 kg = 96.2 kg

v2 = ?

Law of conservation of momentum states that the momentum is equal before and after the throw.

momentum before throw = momentum after throw

53.08 = 0.300 * 17.5 + 96.2 * v2

53.08 = 5.25 + 96.2 * v2

v2 = [53.08 - 5.25 ] / 96.2

v2 = 47.83 / 96.2

v2 = 0.497 ~= 0.50 m/s

User Ryan Tse
by
3.9k points