Answer:
a) t = 1051.6 sec = 17.5 min
b) t = 795.5 sec = 13.25 min
Step-by-step explanation:
First of all we use the initial data to find out constant 'K'.
T - Ts = (T₀ - Ts) e^(-kt)
Here, we have:
T = Final Temperature = 60° C
Ts = Surrounding Temperature = 20° C
T₀ = Initial Temperature = 90° C
t = time = 10 min = 600 sec
k = constant = ?
Therefore,
60° C - 20° C = (90° C - 20° C).e^(-k600)
40° C/70° C = e^(-k600)
ln (0.57142) = -600k
k = 9.327 x 10⁻⁴ sec⁻¹
a)
Now, for this case we have:
T = Final Temperature = 35° C
Ts = Surrounding Temperature = 20° C
T₀ = Initial Temperature = 60° C
t = time = ?
k = constant = 9.327 x 10⁻⁴ sec⁻¹
Therefore,
35° C - 20° C = (60° C - 20° C).e^(-9.327 x 10⁻⁴ sec⁻¹ x t)
15° C/40° C = e^(-9.327 x 10⁻⁴ sec⁻¹ x t)
ln (15/40) = - 9.327 x 10⁻⁴ sec⁻¹ x t
t = 1051.6 sec = 17.5 min
b)
Now, for this case we have:
T = Final Temperature = 35° C
Ts = Surrounding Temperature = -15° C
T₀ = Initial Temperature = 90° C
t = time = ?
k = constant = 9.327 x 10⁻⁴ sec⁻¹
Therefore,
35° C + 15° C = (90° C + 15° C).e^(-9.327 x 10⁻⁴ sec⁻¹ x t)
50° C/105° C = e^(-9.327 x 10⁻⁴ sec⁻¹ x t)
ln (50/105) = - 9.327 x 10⁻⁴ sec⁻¹ x t
t = 795.5 sec = 13.25 min