Answer:
Mass flow rate = 206.72 kg/s
Step-by-step explanation:
Given Data:
T1 = 310 K
T3 = 900 K
P1 = 1 atm
P2 = 8 atm
k = 1.4
cp = 1.005 kJ/kg·K
Calculating the temperature at state 2 using the isetropic relation, we have;
T2/T1 = (P2/P1)^k-1/k
T2 = T1 * (P2/P1)^k-1/k
= 310 * (8/1)^1.4-1/1.4
= 310 * 8^0.4/1.4
= 310 * 1.8114
= 561.55 K
Calculating the temperature at stage 4 using the isetropic relation, we have
T3/T4 = (P2/P1)^k-1/k
900/T4 = (8/1)^1.4-1/1.4
900/T4 = 8^0.4/1.4
900/T4 = 1.8114
T4 = 900/1.8114
= 496.83 K
Finding the net work output, we have;
Wnet = cp(T3-T4) -cp(T2-T1)
= 1.005(900-496.83) - 1.005*( 561.55 -310)
1.005*403.17 - 1.005*251.55
= 405.18585 - 252.80775
= 152.37 kJ/kg
Calculating the mass flow rate using the formula;
Wnet = Mair*wnet
31.5*10^6 = 152.37*10^3*Mair
Mair = 31.5*10^6/152.37*10^3
= 206.72 kg/s
Therefore, mass flow rate = 206.72 kg/s