20.7k views
4 votes
You are given the polar curve r=eθ. (a) List all of the points (r,θ) where the tangent line is horizontal. In entering your answer, list the points starting with the smallest value of r and limit yourself to 1≤r≤1000 ( note the restriction on r!) and 0≤θ<2π. If two or more points share the same value of r, list those starting with the smallest value of θ. If any blanks are unused,

User Plumenator
by
4.8k points

2 Answers

5 votes

Answer:

{ ( 2.193 , π / 4) , ( 10.551 , 3π / 4) , ( 50.754 , 5π / 4) , ( 244.151 , 7π / 4) }

Explanation:

Given:-

- The polar curve has the equation:

r = e^θ

- list the points starting with the smallest value of r such that:

1 ≤ r ≤ 1000 , 0 ≤ θ < 2π.

Find:-

List all of the points (r,θ) where the tangent line is horizontal

Solution:-

- We will first transform the polar curve to cartesian coordinate system using the parametric relations:

x = r*cos (θ)

y = r*sin (θ)

- The tangent line is horizontal when the " dy / dθ " = 0 and " dx / dθ " = 0, so:

x = e^θ*cos (θ) , y = e^θ*sin (θ)

dx / dθ = e^θ*cos (θ) - e^θ*sin(θ)

= e^θ*[cos (θ) - sin(θ)]

dx / dθ = e^θ*[cos (θ) - sin(θ)] = 0,

e^θ = 0 , [cos (θ) - sin(θ)] = 0

e^θ ≠ 0 for the given interval 0 ≤ θ< 2π

cos (θ) - sin(θ) = 0 , tan ( θ ) = 1 - (1st quad and 3rd quad)

θ = { π / 4 , 5π / 4 } , 0 ≤ θ< 2π

- Similarly, evaluate dy/dθ = 0;

dy/dθ = e^θ*cos (θ) + e^θ*sin(θ)

= e^θ*[cos (θ) + sin(θ)]

dy / dθ = e^θ*[cos (θ) + sin(θ)] = 0,

e^θ = 0 , [cos (θ) + sin(θ)] = 0

e^θ ≠ 0 for the given interval 0 ≤ θ< 2π

cos (θ) + sin(θ) = 0 , tan ( θ ) = -1 , (2nd quad and 4th quad)

θ = { 3π / 4 , 7π / 4 } , 0 ≤ θ< 2π

- All possibilities of " θ " over the interval satisfying the a horizontal tangent line to the given polar curve:

θ = { π / 4, 3π / 4 , 5π / 4 , 7π / 4 } , 0 ≤ θ < 2π

- We will plug the evaluated list of values of "θ " in the given polar curve and determine the corresponding values of "r":

r = e^θ

θ = π / 4 , r = e^(π / 4) = 2.193

1: ( r , θ ) = ( 2.193 , π / 4)

θ = 3π / 4 , r = e^(3π / 4) = 10.55072

2: ( r , θ ) = ( 10.551 , 3π / 4)

θ = 5π / 4 , r = e^(5π / 4) = 50.754

3: ( r , θ ) = ( 50.754 , 5π / 4)

θ = 7π / 4 , r = e^(7π / 4) = 244.151

4: ( r , θ ) = ( 244.151 , 7π / 4)

User OjM
by
5.7k points
1 vote

Answer:

θ
0.75\pi
1.75\pi

r 10.551 244.151

Explanation:

The maximum value for
\theta is:


\theta_(max) = \ln r


\theta_(max) = 2.199\pi\,rad

The formula for the slope of the tangent line in polar coordinates is:


m = (r'\cdot \sin \theta + r \cdot \cos \theta)/(r' \cdot \cos \theta - r \cdot \cos \theta)

Horizontal tangent lines have a slope of zero. So, the following relation must be satisfied:


r'\cdot \sin \theta + r \cdot \cos \theta = 0


r'\cdot \sin \theta = - r \cdot \cos \theta


\tan \theta = - (r)/(r')


\tan \theta = -(e^(\theta))/(e^(\theta))


\tan \theta = -1


\theta = \tan^(-1)(-1)


\theta = (3)/(4)\pi + i\cdot \pi, for all
i \in \mathbb{N}_(O).

The maximum value of i is:


i = (\theta_(max)-(3)/(4)\pi )/(\pi)


i = (2.199-0.75)/(1)


i = 1.449 (
i_(max) = 1).

Then, values are listed below:

θ
0.75\pi
1.75\pi

r 10.551 244.151

User Rosencreuz
by
5.3k points