146k views
5 votes
Light traveling from water to a gemstone strikes the surface at an angle of 80.0º and has an angle of refraction of 15.2º . (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

1 Answer

1 vote

Answer:

a

The the speed of light in the gemstone is
v= 0.599*10^8 m/s

b

The unreasonable thing about this is that the speed of ligth in the gemstone is too low

the speed is 19% of the speed of light which is very low

c

One main unreasonable or inconsistent factor is that the assumption that the differnce between the angle of incidence and angle of refraction is very large

Step-by-step explanation:

From the question we are told that

The angle of incidence
i = 80^o

The angle of refraction
r = 15.2^o

From Snell's law we have ,


n_1 sin \theta_1 = n_2 sin \theta_2

Where
n_1 is the refractive index of the first medium (water) with a constant value of
n_1 = 1..333


n_2 is the refractive index of the second medium (gem stone)


\theta_1 is the angle between the beam and perpendicular surface of the first medium


\theta_2 is the angle between the beam an the perpendicular surface of the second medium

Making the
n_2 the subject of the formula


n_2 = n_1 (sin \theta_1)/(sin \theta_2)


= (1.333)((sin (80.0))/(sin 15.2) )


= 5.007

Generally refractive index of a material is mathematically represented


n = (c)/(v)

Where c is the speed light

v is the speed of light observed in a medium

Making v the subject


v = (c)/(n)

substituting value for gem stone


v = (3.0*10^8)/(5.007)


v= 0.599*10^8 m/s

User Pawel Stradowski
by
4.1k points