49.7k views
1 vote
Express as single logarithm.
1/2 log (x) - 2 log (2y) + 3 log (z)

1 Answer

9 votes

Answer:


\log\left((√(x)\:z^2)/(4y^2)\right)

Explanation:


\frac12\log(x)-2\log(2y)+2\log(z)


\textsf{Apply log power rule}: \quad n \log(x)=log(x)^n


\implies \log(x)^(\frac12)-\log(2y)^2+\log(z)^2


\textsf{Apply exponent rule}: \quad(ab)^c=a^cb^c


\implies \log(√(x))-\log(4y^2)+\log(z^2)


\textsf{Apply log quotient rule}: \quad \log(x)-\log(y)=log((x)/(y))


\implies \log\left((√(x))/(4y^2)\right)+\log(z^2)


\textsf{Apply log product rule}: \quad \log(x)+\log(y)=log(xy)


\implies \log\left((√(x)\:z^2)/(4y^2)\right)

User Jeff Clayton
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories