Answer:
a) = 6.23eV
b) = 0eV
c) = 6.23V
d) = 304.12nm
Step-by-step explanation:
λ = 199nm
E = 4.08eV = Φ
hf = K(max) + Φ
Φ = work function of the target material
hf = photon energy
K(max) = k.e of the metal
K(max) = [(6.626*10⁻³⁴) * (3.0*10⁸)] / 199*10⁻⁹
K(max) = 9.99*10⁻¹⁹J
1.602*10⁻¹⁹J = 1eV
9.99*10⁻¹⁹ = 6.23eV
K(max) = 6.23eV
b). The slowest moving electron has a kinetic energy of zero
c). The stopping potential is the potential difference required to stop the fastest electron.
eV = K(max)
V = K(max) / e
V = 6.23eV / e
V = 6.23V
d)
The cut- off wavelength occurs when the maximum K.E is zero.
Φ = hc / λ
λ₀ = hc / Φ
λ₀ = (6.626*10⁻³⁴ * 3.0*10⁸) / (4.08 * 1.602*10⁻¹⁹)
λ₀ = 1.9878*10⁻²⁵ / 6.5361*10⁻¹⁹
λ₀ = 3.04*10⁻⁷m
λ₀ = 304.12nm