Answer:
The population will reach 100,000 in 2047.
The population will reach 200,000 in 2082.
Explanation:
The compounded growth formula:
![A=P(1+r)^t](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c872aqu6q0dd7tljxgf8hlf0t2ms29htu5.png)
A= Population after t years
P= Initial amount of population
r= rate of growth
t= Time in years
Given that,
P=50,000, r=2% =0.02, A=100,000
![\therefore 100,000=50,000(1+0.02)^t](https://img.qammunity.org/2021/formulas/mathematics/high-school/vlp3z8hhd0ilhsv2ep8o6qanuiq7z1gedl.png)
![\Rightarrow 1.02^t=(100,000)/(50,000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vxt7746cwruequjxo22scbq7e9m1g1qks9.png)
![\Rightarrow 1.02^t=2](https://img.qammunity.org/2021/formulas/mathematics/high-school/qcm74k1h6tpltd1xrvz7ltgqn0geir9vp0.png)
Taking ln both sides
![\Rightarrow ln(1.02^t)=ln|2|](https://img.qammunity.org/2021/formulas/mathematics/high-school/yjjomkl6vnfiudu34h420am7x4yc7g64bd.png)
![\Rightarrow t\ ln(1.02)=ln|2|](https://img.qammunity.org/2021/formulas/mathematics/high-school/5n6ziopa8mx474gybrsq3aun17oc1jmftu.png)
![\Rightarrow t=(ln|2|)/( ln(1.02))](https://img.qammunity.org/2021/formulas/mathematics/high-school/nw5n3rtu7j07psh9p5h6iij5ziuwruowup.png)
![\Rightarrow t\approx 35](https://img.qammunity.org/2021/formulas/mathematics/high-school/rh0an2ns37fl720ohfn72pgpl2f07u21sl.png)
The population will reach 100,000 in (2012+35)=2047
P=50,000, r=2% =0.02, A=200,000
![\therefore 200,000=50,000(1+0.02)^t](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2w2jo6h2i74dtlxdytelcsecozy9kfj35.png)
![\Rightarrow 1.02^t=(200,000)/(50,000)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ie6qi4v1kll8fe60yg4kg3yo2w3f5y8m8j.png)
![\Rightarrow 1.02^t=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/z9ol75n65pksubbxp76lq8morq8h5ifqn3.png)
Taking ln both sides
![\Rightarrow ln(1.02^t)=ln|4|](https://img.qammunity.org/2021/formulas/mathematics/high-school/p52b4nsco3sfiqdsx7zo6law1x2sf1vv7d.png)
![\Rightarrow t\ ln(1.02)=ln|4|](https://img.qammunity.org/2021/formulas/mathematics/high-school/gfqa3ddamsvn7kelvyf06k15kd8bl17pdv.png)
![\Rightarrow t=(ln|4|)/( ln(1.02))](https://img.qammunity.org/2021/formulas/mathematics/high-school/om40aldik8bhl8idgmjhkzp7kdsiayjedi.png)
![\Rightarrow t\approx 70](https://img.qammunity.org/2021/formulas/mathematics/high-school/ln58jphs677wwri2ap5juz1ro6nmmbg8zf.png)
The year it will reach 200,000 is (2012+70)=2082