170k views
4 votes
A local hotel wants to estimate the proportion of its guests that are from out-of-state. Preliminary estimates are that 45% of the hotel guests are from out-of-state. How large a sample should be taken to estimate the proportion of out-of-state guests with a margin of error no larger than 5% and with a 95% level of confidence

User Bdombro
by
4.9k points

1 Answer

2 votes

Answer:


n=(0.45(1-0.45))/(((0.05)/(1.96))^2)=380.32

And rounded up we have that n=381

Explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

Solution to the problem

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by
\alpha=1-0.95=0.05 and
\alpha/2 =0.025. And the critical value would be given by:


z_(\alpha/2)=-1.96, z_(1-\alpha/2)=1.96

The margin of error for the proportion interval is given by this formula:


ME=z_(\alpha/2)\sqrt{(\hat p (1-\hat p))/(n)} (a)

And on this case we have that
ME =\pm 0.05 and we are interested in order to find the value of n, if we solve n from equation (a) we got:


n=(\hat p (1-\hat p))/(((ME)/(z))^2) (b)

And replacing into equation (b) the values from part a we got:


n=(0.45(1-0.45))/(((0.05)/(1.96))^2)=380.32

And rounded up we have that n=381

User Anstarovoyt
by
4.1k points