206k views
2 votes
For the function given​ below, find a formula for the Riemann sum obtained by dividing the interval​ [a,b] into n equal subintervals and using the​ right-hand endpoint for each c Subscript k. Then take a limit of this sum as n right arrow infinity to calculate the area under the curve over​ [a,b]. ​f(x)equals4x over the interval ​[2​,5​]. Find a formula for the Riemann sum.

1 Answer

5 votes

Answer with Step-by-step explanation:

We are given that


f(x)=4x

Interval=[2,5]


h=(b-a)/(n)=(5-2)/(n)=(3)/(n)


x_i=i(3)/(n)

Where i=1,2,3,... n


f(x_i)=4i* (3)/(n)=(12i)/(n)

Riemann sum=
\lim_(n\rightarrow \infty)\sum_(i=1)^(n)f(x_i)\cdot h=\lim_(n\rightarrow \infty)\sum_(i=1)^(n)((12i)/(n)* (3)/(n)

Riemann sum=
\lim_(n\rightarrow \infty)(36)/(n^2)\sum_(i=1)^(n)i

Riemann sum=
\lim_(n\rightarrow \infty)(36)/(n^2)* (n(n+1))/(2)

By using


\sum n=(n(n+1))/(2)

Riemann sum=
\lim_(n\rightarrow \infty)(18n(n+1))/(n^2)=\lim_(n\rightarrow \infty)18(1+(1)/(n))

Apply the limit

Area under the curve=
18 square units

User Stradas
by
4.2k points