25,237 views
31 votes
31 votes
If x/a =y/b=z/c prove the follong photo​

If x/a =y/b=z/c prove the follong photo​-example-1
User Raza
by
3.0k points

1 Answer

17 votes
17 votes

Answer:

See Explanation

Explanation:

Given


(x)/(a)= (y)/(b) =(z)/(c)


Let \: (x)/(a)= (y)/(b) =(z)/(c)=m

(where m is any constant)


\implies


(x)/(a)=m\implies x =am


(y)/(b)=m\implies y =bm


(z)/(c)=m\implies z =cm

To Prove:


(ax-by)/((a+b)(x-y))+(by-cz)/((b+c)(y-z))=2

LHS
=(ax-by)/((a+b)(x-y))+(by-cz)/((b+c)(y-z))

(Plug the values of x, y and z in the form of am, bm and cm respectively in the LHS)


=(a(am)-b(bm))/((a+b)(am-bm))+(b(bm)-c(cm))/((b+c)(bm-cm))


=(a^2m-b^2m)/((a+b)m(a-b))+(b^2m-c^2m)/((b+c)m(b-c))


=(m(a^2-b^2))/(m(a+b)(a-b))+(m(b^2-c^2))/(m(b+c)(b-c))


=\frac{\cancel{m(a^2-b^2)}}{\cancel{m(a^2-b^2)}}+\frac{\cancel{m(b^2-c^2)}}{\cancel{m(b^2-c^2)}}

= 1 + 1

= 2

= RHS


\implies \purple{\bold{(ax-by)/((a+b)(x-y))+(by-cz)/((b+c)(y-z))}}=\red{\bold{2}}

Thus proved

User Burseaner
by
2.9k points