Answer:
1)
, 2) The domain of S is
. The range of S is
, 3)
, 4)
, 5)
![S = 164.830\,in^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/eedmlmygmjv8se5botzmj23mtou7r0not8.png)
Explanation:
1) The function of the box is:
![S = 2\cdot (w - 2\cdot x)\cdot x + 2\cdot (l-2\cdot x)\cdot x +(w-2\cdot x)\cdot (l-2\cdot x)](https://img.qammunity.org/2021/formulas/mathematics/college/s5m0zcth6jg0yrfux9zr10nqr02tjl4jvh.png)
![S = 2\cdot w\cdot x - 4\cdot x^(2) + 2\cdot l\cdot x - 4\cdot x^(2) + w\cdot l -2\cdot (l + w)\cdot x + l\cdot w](https://img.qammunity.org/2021/formulas/mathematics/college/2run102my6p0osnjq9eck9tthejluyltza.png)
![S = 2\cdot (w+l)\cdot x - 8\cdpt x^(2) + 2\cdot w \cdot l - 2\cdot (l+w)\cdot x](https://img.qammunity.org/2021/formulas/mathematics/college/w7ja8r3vrwffcb88or3ollw7tmxws5mr50.png)
![S = 2\cdot w\cdot l - 8\cdot x^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/hnl5gbc2u3s9x5d7a48e46vacyjn7yehxc.png)
2) The maximum cutout is:
![2\cdot w \cdot l - 8\cdot x^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/dxg5ql7k8rfiyrbcv4c18ou7pmho4hqf58.png)
![w\cdot l - 4\cdot x^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/han94el5pyaviotv0ftxh0vwug90l8hxpl.png)
![4\cdot x^(2) = w\cdot l](https://img.qammunity.org/2021/formulas/mathematics/college/sbbgcim69d09ex2rql3dh05u9vqdj14vsb.png)
![x = (√(w\cdot l))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/rcgt0gp1ipijp68zhs5u99lju3jr965urh.png)
The domain of S is
. The range of S is
![0 \leq S \leq 2\cdot w \cdot l](https://img.qammunity.org/2021/formulas/mathematics/college/qb59ji93lbi0x3dnqxdxj8iziedrx4vvdt.png)
3) The surface area when a 1'' x 1'' square is cut out is:
![S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1\,in)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/vjacwa9p6pdlacrab9r5w7ccup3ov6xmkf.png)
![S = 176\,in^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/n9rk7zws0kjnhfodxjbgp0kgr4nfpkkcbn.png)
4) The size is found by solving the following second-order polynomial:
![20\,in^(2) = 2 \cdot (8\,in)\cdot (11.5\,in)-8\cdot x^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/pdby0t4tbnxehhywvpqw3jgxiabqejuyk1.png)
![20\,in^(2) = 184\,in^(2) - 8\cdot x^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/h228soq515udg46wr9rzb813eo6pginsw7.png)
![8\cdot x^(2) - 164\,in^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/tneb6q9gbbhrrowi20xtk51lsldwxor63z.png)
![x \approx 4.528\,in](https://img.qammunity.org/2021/formulas/mathematics/college/fwsi9o3bxr1drprzpvuxfr7yq0e6s8dso2.png)
5) The equation of the box volume is:
![V = (w-2\cdot x)\cdot (l-2\cdot x) \cdot x](https://img.qammunity.org/2021/formulas/mathematics/college/u7bzkj3arsbn2aie8ibkkmutk0rwgmkb1y.png)
![V = [w\cdot l -2\cdot (w+l)\cdot x + 4\cdot x^(2)]\cdot x](https://img.qammunity.org/2021/formulas/mathematics/college/od4av4rv1f6pjff553id30aihaj5pbur7s.png)
![V = w\cdot l \cdot x - 2\cdot (w+l)\cdot x^(2) + 4\cdot x^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/94pc01p1m0fyvkqauyueyzstu2m18oe5p7.png)
![V = (8\,in)\cdot (11.5\,in)\cdot x - 2\cdot (19.5\,in)\cdot x^(2) + 4\cdot x^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/unpeqt6i7vlj1r8lqswb39uoc1pj2xl0l4.png)
![V = (92\,in^(2))\cdot x - (39\,in)\cdot x^(2) + 4\cdot x^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/uk4ji3829m1mu56jsedn2g6yp31foq27pb.png)
The first derivative of the function is:
![V' = 92\,in^(2) - (78\,in)\cdot x + 12\cdot x^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/b3hlabd5zpgyf5fjd9zutdarbo5j9whuoh.png)
The critical points are determined by equalizing the derivative to zero:
![12\cdot x^(2)-(78\,in)\cdot x + 92\,in^(2) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/svlf8a9m8zrh10df7dhsf260o53nqn32ap.png)
![x_(1) \approx 4.952\,in](https://img.qammunity.org/2021/formulas/mathematics/college/p6t49nvtb2xibw7olnq1slkmcd0lz0q3m6.png)
![x_(2)\approx 1.548\,in](https://img.qammunity.org/2021/formulas/mathematics/college/yfmqpk2nujsfkg5cnrnqjprc4rmtzwn38x.png)
The second derivative is found afterwards:
![V'' = 24\cdot x - 78\,in](https://img.qammunity.org/2021/formulas/mathematics/college/5jgxtmpx25xjcad3chwkvekqrlvbjhw5ph.png)
After evaluating each critical point, it follows that
is an absolute minimum and
is an absolute maximum. Hence, the value of the cutoff so that volume is maximized is:
![x \approx 1.548\,in](https://img.qammunity.org/2021/formulas/mathematics/college/drefrc2aqd0np4tn3uuawtnzcdsg2qkaqt.png)
The surface area of the box is:
![S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1.548\,in)^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/v54wtsw1vnl7gxm9uz2s9dcycrxx7mpyy7.png)
![S = 164.830\,in^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/eedmlmygmjv8se5botzmj23mtou7r0not8.png)