Answer:
Explanation:
Given that,
p = 0.20
1 - p = 1 - 0.20 = 0.80
n = 130
\mu\hat p = p = 0.20
A) \sigma \hat p = \sqrt[p( 1 - p ) / n] = \sqrt [(0.20 * 0.80 ) / 130] = 0.0351
B) P( \hat p > 0.15) = 1 - P( \hat p < 0.15)
= 1 - P(( \hat p - \mu \hat p ) / \sigma \hat p < (0.15 - 0.20) / 0.0351 )
= 1 - P(z < -1.42)
Using z table
= 1 - 0.0778
= 0.9222
C) P(0.18 < \hat p < 0.22)
= P[(0.18 - 0.20) / 0.0351 < ( \hat p - \mu \hat p ) / \sigma \hat p < (0.22 - 0.20) / 0.0351]
= P(-0.57 < z < 0.57)
= P(z < 0.57) - P(z < -0.57)
Using z table,
= 0.7157 - 0.2843
= 0.4314