Answer:
![a_e = (Gm)/(r^2)](https://img.qammunity.org/2021/formulas/physics/college/hf8lqg5d57jn7twc9lm4yf81mo53e96e7y.png)
Step-by-step explanation:
We assume that:
M to represent the mass of the earth
m to equally represent the mass of the moon
r should be the distance between the center of the earth to the center of the moon.
Then;
the expression for the gravitational force can be written as:
![F = (GMm)/(r^2)](https://img.qammunity.org/2021/formulas/physics/college/igcgni59wg9ojr5fnhuqe5l8bobwaa3opf.png)
Where
is the acceleration produced by the earth; then:
![F =M *a_e](https://img.qammunity.org/2021/formulas/physics/college/zeqq9w8tp3ba9myouikd48te3da4x152p9.png)
Then:
![M*a_e = (GMm)/(r^2)](https://img.qammunity.org/2021/formulas/physics/college/dgshv2yj3wzxsngmvr4lmtod2lf55alzk7.png)
![a_e = (GMm)/(Mr^2)](https://img.qammunity.org/2021/formulas/physics/college/a4oa8zodcbax0r7w7vcr3axrqzvr758myt.png)
![a_e = (Gm)/(r^2)](https://img.qammunity.org/2021/formulas/physics/college/hf8lqg5d57jn7twc9lm4yf81mo53e96e7y.png)
Therefore, the magnitude of the acceleration of the earth due to the gravitational pull of the moon
![a_e = (Gm)/(r^2)](https://img.qammunity.org/2021/formulas/physics/college/hf8lqg5d57jn7twc9lm4yf81mo53e96e7y.png)