213k views
4 votes
Air is contained in a cylinder device fitted with a piston-cylinder. The piston initially rests on a set of stops, and a pressure of 300 kPa is required to move the piston. Initially, the air is at 100 kPa and 27°C and occupies a volume of 0.4 m^3.

A) Determine the amount of heat transferred to the air, in kJ, while increasing the temperature to 1200 K. Assume air has constant specific heats evaluated at 300 K.

1 Answer

4 votes

Answer:

The amount of heat transferred to the air is 340.24 kJ

Step-by-step explanation:

From P-V diagram,

Initial temperature T1 = 27°C

Initial pressure P1 = 100 kPa

final pressure P3 = P2 = 300 kPa

volume at point 2, V2 = V1 = 0.4 m³

final temperature T2 = T3 = 1200 K

To determine the final pressure V3, use ideal gas equation

PV = mRT

Where R is the specific gas constant = 0.2870 KPa m³ kg K

But,

from initial condition, mass m = PV/RT

m = (P1*V1)/R*T1

T1 = 27+273 = 300K

m = (100*0.4)/(0.2870*300) = 0.4646 kg

Then;

Final volume V3 = mRT3/P3

V3 = (0.4646*0.2870*1200)/300

V3 = 0.5334 m³

Total work done W is determined where there is volume change which from point 2 to 3.

W = P3*(V3-V2)

W = 300*(0.5334-0.4) = 40.02 kJ

To get the internal energy, the heat capacity at room temperature Cv is 0.718 kJ/kg K

∆U = m*Cv*(T2-T1)

∆U = 0.4646*0.718(1200-300)

∆U = 300.22 kJ

The heat transfer Q = W + ∆U

Q = 40.02 + 300.22 = 340.24 kJ

Determine the amount of heat transferred to the air, in kJ, while increasing the temperature to 1200 K is 340.24 kJ

The attached file shows the Pressure - Volume relationship (P -V graph)

Air is contained in a cylinder device fitted with a piston-cylinder. The piston initially-example-1
User Jfga
by
4.4k points