39.0k views
1 vote
Five Kilograms of continuous boron fibers are introduced in a unidirectional orientation into of an 8kg aluminum matrix. Calculate:

a. the density of the composite.
b. the modulus of elasticity parallel to the fibers.
c. the modulus of elasticity perpendicular to the fibers.

User ThePrince
by
5.1k points

1 Answer

4 votes

Answer:

Step-by-step explanation:

Given that,

Mass of boron fiber in unidirectional orientation

Mb = 5kg = 5000g

Mass of aluminum fiber in unidirectional orientation

Ma = 8kg = 8000g

A. Density of the composite

Applying rule of mixing

ρc = 1•ρ1 + 2•ρ2

Where

ρc = density of composite

1 = Volume fraction of Boron

ρ1 = density composite of Boron

2 = Volume fraction of Aluminum

ρ2 = density composite of Aluminum

ρ1 = 2.36 g/cm³ constant

ρ2 = 2.7 g/cm³ constant

To Calculate fractional volume of Boron

1 = Vb / ( Vb + Va)

Vb = Volume of boron

Va = Volume of aluminium

Also

To Calculate fraction volume of aluminum

2= Va / ( Vb + Va)

So, we need to get Va and Vb

From density formula

density = mass / Volume

ρ1 = Mb / Vb

Vb = Mb / ρ1

Vb = 5000 / 2.36

Vb = 2118.64 cm³

Also ρ2 = Ma / Va

Va = Ma / ρ2

Va = 8000 / 2.7

Va = 2962.96 cm³

So,

1 = Vb / ( Vb + Va)

1 = 2118.64 / ( 2118.64 + 2962.96)

1 = 0.417

Also,

2= Va / ( Vb + Va)

2 = 2962.96 / ( 2118.64 + 2962.96)

2 = 0.583

Then, we have all the data needed

ρc = 1•ρ1 + 2•ρ2

ρc = 0.417 × 2.36 + 0.583 × 2.7

ρc = 2.56 g/cm³

The density of the composite is 2.56g/cm³

B. Modulus of elasticity parallel to the fibers

Modulus of elasticity is defined at the ratio of shear stress to shear strain

The relation for modulus of elasticity is given as

Ec = = 1•Eb+ 2•Ea

Ea = Elasticity of aluminium

Eb = Elasticity of Boron

Ec = Modulus of elasticity parallel to the fiber

Where modulus of elastic of aluminum is

Ea = 69 × 10³ MPa

Modulus of elastic of boron is

Eb = 450 × 10³ Mpa

Then,

Ec = = 1•Eb+ 2•Ea

Ec = 0.417 × 450 × 10³ + 0.583 × 69 × 10³

Ec = 227.877 × 10³ MPa

Ec ≈ 228 × 10³ MPa

The Modulus of elasticity parallel to the fiber is 227.877 × 10³MPa

OR Ec = 227.877 GPa

Ec ≈ 228GPa

C. modulus of elasticity perpendicular to the fibers?

The relation of modulus of elasticity perpendicular to the fibers is

1 / Ec = 1 / Eb+ 2 / Ea

1 / Ec = 0.417 / 450 × 10³ + 0.583 / 69 × 10³

1 / Ec = 9.267 × 10^-7 + 8.449 ×10^-6

1 / Ec = 9.376 × 10^-6

Taking reciprocal

Ec = 106.66 × 10^3 Mpa

Ec ≈ 107 × 10^3 MPa

Note that the unit of Modulus has been in MPa,

User Alex Coventry
by
5.0k points