Answer:
a) y (n + 1) = 1.005 y(n) + 5U n
y (n + 1) - 1.005 y(n) = 5U (n)
b) Z^-1(Z(y0)=y(n) = [1010(1.005)^n - 1000(1)^n] U(n)
c) h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)
Step-by-step explanation:
Her bank account can be modeled as:
y (n + 1) = y (n) + 0.5% y(n) + $5
y (n + 1) = 1.005 y(n) + 5U n
Given that y (0) = $10
y (n + 1) - 1.005 y(n) = 5U (n)
Apply Z transform on both sides
= ZY ((Z) - Z(y0) - 1.005) Z = 5 U (Z)
U(Z) = Z {U(n)} = Z/ Z - 1
Y(Z) [Z- 1.005] = Z y(0) + 5Z/ Z - 1
= 10Z/ Z - 1.005 + 5Z/(Z - 1) (Z - 1.005)
Y(Z) = 10Z/ Z - 1.005 + 1000Z/ Z - 1.005 + 1000Z/ Z - 1
= 1010Z/Z- 1.005 - 1000Z/Z-1
Apply inverse Z transform
Z^-1(Z(y0)) = y(n) = [1010(1.005)^n - 1000(1)^n] U(n)
Impulse response in output when input f(n) = S(n)
That is,
y(n + 1)= 1. 005y (n) + 8n
y(n + 1) - 1.005y (n) = 8n
Apply Z transform
ZY (Z) - Z(y0) - 1.005y(Z) = 1
HZ (Z - 1.005) = 1 + 10Z [Therefore y(Z) = H(Z)]
H(Z) = 1/ Z - 1.005 + 10Z/Z - 1. 005
Apply inverse laplace transform
= h(n) = (1.005)^n U(n - 1) + 10(1.005)^n U(n)