81.5k views
6 votes
An old 0.500 L lecture bottle of triethylamine (N(CH₂CH₃)₃) was found in a lab and needed for a synthesis reaction. A pressure regulator indicated a pressure of 27.0 psi, and the lab was at room temperature (25.0°C). What mass of vaporized triethylamine in grams was left in the lecture bottle?

User TER
by
5.5k points

1 Answer

8 votes

Answer:

About 3.81 grams.

Step-by-step explanation:

We can use the ideal gas law. Recall that:


\displaystyle PV = nRT

Note that the universal gas constant R has the value 0.08206 L-atm/mol-K.

Hence, convert the measured pressure to atms (1 atm = 14.7 psi):


\displaystyle 27.0\text{ psi} \cdot \frac{1\text{ atm}}{14.7\text{ psi}} = 1.84\text{ atm}

Rearrange the equation to solve for n, the number of moles of vaporized triethylamine and evaluate. The temperature is (25.0 + 273.15 ) K = 298.2 K:


\displaystyle \begin{aligned} n& = (PV)/(RT) \\ \\ & = \frac{(1.84\text{ atm})(0.500\text{ L})}{\left(\frac{0.08206\text{ L - atm}}{\text{mol-K}}\right)(273.2\text{ K})} \\ \\ &= 0.0376\text{ mol N(CH$_2$CH$_3$)$_3$}\end{aligned}

Convert from moles to grams:


\displaystyle 0.0376\text{ mol N(CH$_2$CH$_3$)$_3$} \cdot \frac{101.22\text{ g N(CH$_2$CH$_3$)$_3$}}{1\text{ mol N(CH$_2$CH$_3$)$_3$}} = 3.81\text{ g N(CH$_2$CH$_3$)$_3$}}

In conclusion, there is about 3.81 grams of vaporized triethylamine in the lecture bottle.

User BBlackwo
by
5.8k points