Given:
The given figure ABCD is a trapezoid.
The measure of ∠A is (2x + 32).
The measure of ∠B is 112°
The measure of ∠C is y.
The measure of ∠D is 46°
We need to determine the value of x and y.
Value of x:
We know the property that the adjacent angles in a trapezoid are supplementary.
Thus, we have;
![\angle A+\angle B=180](https://img.qammunity.org/2021/formulas/mathematics/college/fsc3in8wvy6nuceg7hlziotkux1m00d0zc.png)
Substituting the values, we get;
![2x+32+112=180](https://img.qammunity.org/2021/formulas/mathematics/college/6kcvbfqltp1ico0edw6t6oox4oe932kvng.png)
![2x+144=180](https://img.qammunity.org/2021/formulas/mathematics/college/erf1pap0g1m05o46l88sf151ndkrlwd8za.png)
![2x=36](https://img.qammunity.org/2021/formulas/mathematics/high-school/ipnt5hheabmf2jexis8w0fvhltduwywysp.png)
![x=18](https://img.qammunity.org/2021/formulas/mathematics/high-school/n2sz6qdf1mu2rolhdsvgrhnwbfuvcxr82h.png)
Thus, the value of x is 18.
Value of y:
The value of y can be determined using the property that the adjacent angles of a trapezoid are supplementary.
Thus, we have;
![\angle C+\angle D=180](https://img.qammunity.org/2021/formulas/mathematics/college/4lnqhmgxwbe54s3dsyz973dlrd3vygvcbv.png)
![y+46=180](https://img.qammunity.org/2021/formulas/mathematics/college/powuonsyl3pvwnjq1hzx9xruqgy5zkh5oy.png)
![y=134](https://img.qammunity.org/2021/formulas/mathematics/college/ubgguk9f50fmo1qles6nodccj3l3bg5o2x.png)
Thus, the value of y is 134.
Hence, Option c is the correct answer.