Answer: There is no solution
Explanation:
Given that
csc(θ) cot(θ) − sin(θ) tan(θ) = cos(θ) ........(1)
Where
csc(θ) = 1/sin(θ)
cot(θ) = 1/tan(θ) = cos(θ)/sin(θ)
tan(θ) = sin(θ)/cos(θ)
Substitute them in equation (1)
1/sin(θ) × cos(θ)/sin(θ) - sin(θ)×sin(θ)/cos(θ) = cos(θ)
Cos(θ)/sin^2(θ) - sin^2(θ)/cos(θ) = cos(θ)
Cos(θ)/sin^2(θ) = sin^2(θ)/cos(θ) + cos(θ)
Take the LCM of right hand side
Cos(θ)/sin^2(θ) = (sin^2(θ) + cos^2(θ))/ cos(θ)
But sin^2(θ) + cos^2(θ) = 1
Cos(θ)/sin^2(θ) = 1 /cos(θ)
Cross multiply
Cos^2(θ) = sin^2(θ)
Cos^2(θ) - sin^2(θ) = 0
If θ = 45
That means there's no solution