Answer:
![123.44 inches^2](https://img.qammunity.org/2021/formulas/mathematics/college/u89qqpy2u9pv5amyoa2yqy607a2p79nupx.png)
Explanation:
Total area = 2 x semi-circle + quarter-circle
![A=2* (1)/(2) \pi r_(semicircle)^2+(1)/(4)\pi r_(quartercircle)^2](https://img.qammunity.org/2021/formulas/mathematics/college/wodkt2achtiqghu5oh2qs7bdwiox3z8fn4.png)
The area of a circle is
, so the area of half a circle is half this, and the area of quarter of a circle is a quarter of this.
![A=2* (1)/(2) \pi(6.1)^2+(1)/(4)\pi (2.9)^2](https://img.qammunity.org/2021/formulas/mathematics/college/pzwmlbawyogudsfrlodtnykx0l5k5fc4pf.png)
Substitute our values of pi for 3.14
![A=2* (1)/(2) (3.14)(6.1)^2+(1)/(4)(3.14)(2.9)^2](https://img.qammunity.org/2021/formulas/mathematics/college/7et1exvf4ehp3o3q8mjh749mz9kqum7x39.png)
Simplify
![A=(3.14)((6.1)^2+(1)/(4)(2.9)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/hthx3yc035momcb2764sureok0zsce9q7d.png)
Now solve for A
![A=123.44](https://img.qammunity.org/2021/formulas/mathematics/college/wp768b2d618vujpey476hfavuya5rw1f69.png)