121k views
0 votes
Solve equation by the quadratic formula. List the solutions, separated by commas.

4r^2 +3r+10=8

User TunaFFish
by
5.7k points

1 Answer

5 votes

Answer:


-(3)/(8) +\frac{\sqrt[]{23}i }{8},-(3)/(8) -\frac{\sqrt[]{23}i }{8}

or


-0.375+0.599479i,-0.375-0.599479i

Explanation:


4r^2+3r+10=8

Bring the 8 to the left side so that we equal the equation to 0. To do this, simply substract 8 on both sides.


4r^2+3r+10-8=8-8\\4r^2+3r+2=0

Where;


a=4\\b=3\\c=2


Formula: x=\frac{-b\frac{+}{}\sqrt[]{b^2-4ac} }{2a}

Replace. Let x be r


r=\frac{-3\frac{+}{}\sqrt[]{(3)^2-4(4)(2)} }{2(4)}


r=\frac{-3\frac{+}{}\sqrt[]{9-32} }{8}


r=\frac{-3\frac{+}{}\sqrt[]{-23} }{8}

It has no real solution because the square root is negative.

We can say that,


r=-(3)/(8) \frac{+}{}\frac{\sqrt[]{23}*\sqrt[]{-1} }{8}


r=-(3)/(8) \frac{+}{}\frac{\sqrt[]{23}i }{8}


r_1=-0.375+0.599479i\\r_2=-0.375-0.599479i

User Vatsal Mevada
by
6.2k points