Answer:
x = 2π, x = π + 2πn
Explanation:
1. (subtract from both sides)
sin(4x) cos(3x) - cos(4x) sin(3x) = 0
2. (Use the identity: -cos(s) sin(t) + cos(t) sin (s) = sin(s - t))
sin (4x - 3x) = 0
3. general solutions for sin(4x - 3x) = 0
4x - 3x = 0 + 2πn,
4x - 3x = π + 2πn