Answer:
Explanation:
3) ΔABC ≅ ΔDEF
AB = ED {Corresponding parts of corresponding triangles are equal}
6y - 4 = 4y +2
add 4 to both sides
6y - 4 + 4 = 4y + 2 + 4
6y = 4y + 6
subtract 4y from both sides
6y - 4y = 4y + 6 - 4y
2y = 6
Divide by 2
y = 3
AB = 6y - 4 = 6*3 - 4 = 18 - 4 =14
AB = 14
ΔABC ≅ ΔDEF
∠A = ∠D {Corresponding parts of corresponding triangles are equal}
5x + 2 =87
5x = 87 - 2
5x = 85
x = 85/5
x = 17
In ΔDEF,
∠D + ∠E + ∠F = 180° {SUM OF ALL ANGLES OF TRIANGLES}
87 + 42 + ∠F = 180
129 + ∠F = 180°
∠F = 180 - 129
∠F = 51°
ΔABC ≅ ΔDEF
∠C = ∠F {Corresponding parts of corresponding triangles are equal}
3y = 51
y= 51/3
y = 17