23.5k views
3 votes
Prove the identity
(cot x sin x)(sec x – cos x) = sin^2x

Prove the identity (cot x sin x)(sec x – cos x) = sin^2x-example-1
User Johowie
by
7.5k points

2 Answers

4 votes

Answer:

[(cosx/sinx)(sinx)][(1/cosx) - cosx]

(cosx)[(1 - cos²x)/cosx]

1 - cos²x

sin²x

3 votes

Explanation:


(cot x \: sinx)(secx - cosx) = {sin}^(2) x \\ \\ lhs = (cot x \: sinx)(secx - cosx) \\ = (cot x \: sinx) * secx \\- (cot x \: sinx) * cosx \\ \\ = (cosx)/(sinx) * sinx * secx\\ - (cosx)/(sinx) * sinx * cosx \\ = cosx * secx - cosx * cosx \\ = 1 - {cos}^(2) x \\ = {sin}^(2) x \\ = rhs \\ hence \: proved

User Headsvk
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories